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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2457

ATR FORCES AND MOMENTS ON TRIANGULAR AND RELATED
WINGS WITH SUBSONIC LEADING EDGES OSCILIATING
IN SUPERSONIC POTENTIAL FLOW

By Charles E. Watkins
SUMMARY

This analysis treats the air forces and moments in supersonic
potential flow on oscillating triangular wings and a series of swept-
back and arrow wings with subsonic leading edges and supersonic trailing
edges. TFor the wings undergoing sinusoidal torsional oscillations simul-
taneously with vertical translations, the linearized velocity potential
is derived in the form of a power series in terms of a frequency param-
eter. This method can be useful for treatment of similar problems for
other plan forms and for wings undergoing other sinusoidal motions.

For triangular wings, as many terms of such a series expansion as may
be desired can be determined; however, the terms after the first few
become very cumbersome.

Closed expressions that include the reduced frequency to the third
power, an order which 1s sufficlent for a large class of practical
applications, are given for the velocity potential and for the components
of chordwise section force and moment coefficients.

These wings are found to exhibit the possibility of undamped tor-
sional oscillations for certain ranges of Mach number and locations of
the axis of rotation. The ranges of these parameters are delineated for
triangular wings.

INTRODUCTION

This paper is concerned with the derivation of expressions for the
velocity potential and associated forces and moments for oscillating
triangular wings in supersonic flow. The boundary-value problem for
the linearized velocity potential for an apex-forward triangular wing
oscillating in a supersonic main stream may be classified, according to
reference 1, as "purely supersonic" if the leading edges of the triangle
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are outside the Mach cone emanating from the apex of the triangle or
"mixed supersonic" if the leading edges are inside this Mach cone.

In the purely supersonic case the principle of independence holds;
that is, the flow on the upper surface of the wing is independent of the
flow on the lower surface and vice versa. Garrick and Rubinow (refer-
ence 1) have shown that the boundary-value problem for the velocity
potential in the purely supersonic case can be satisfied by simple dis-
tributions of sources with local strength proportional to the local
prescribed normal velocity of the wing.

In the mixed supersonic case the principle of independence does not
hold. Boundary-value problems for lift-producing wings in this case can
be satisfied by distributions of doublets; the relation between doublet
strength and normal velocity of the wing is, however, in general, not
simple. The determination of this relation requires the solution of an
integral equation that employs the potential of a time-dependent unit
doublet as kernel and limits of integration that depend on Mach number
and wing plan form.

For treatment of problems that involve boundary conditions that are D ow
independent of time, such as constant angle of attack, constant rate of
pitching, and so forth, the doublet potential, employed as kernel of the
integral equation, is considered independent of time and in these cases
the integral equations for triangular wings can be solved by a straight-
forward process.

For treatment of problems of oscillating wings, however, it is
necessary to employ, as the kernel of the integral equations, a doublet
potential that varles harmonically with time and in this case the solu-
tion of the integral equation, generally, becomes very cumbersome. If
the doublet potentlal or kernel is expanded in terms of the frequency
of oscillation, however, use can be made of knowledge of solutions of
integral equations for problems that are independent of time to obtain
an expanded form of solution for a wing undergoing harmonic oscillations.
Such a procedure was demonstrated in treatments of rectangular wings in
references 2 and 3. (The derivation in reference 3 is based on an
erroneous argument, regarding certaln terms in the normal velocity;
nevertheless, the final expression given for the velocity potential is
correct.)

The purpose of the present paper is to make use of the expanded
form of the velocity potential to obtain the forces and moments, based
on the first few terms of this potential, for a rigid triangular wing
performing vertical and pitching sinusoidal oscillations in mixed super-
gsonic flow. Although as many terms of the expanded potential as may be
desired can be obtained after the first few terms, the process becomes .
very cumbersome. The flow normal to the leading edge is subsonic but
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the flow normal to the trailing edge is considered to be supersonic.
This latter consideration implies that the potential derived for trian-
gular plan forms may be used to calculate the aerodynamic forces and
moments for other plan forms that may be formed with the triangular wing
by cutting the trailing edges so that they lie ahead of the Mach cones
emanating from their foremost points.

Other approaches to the solution of the problem of oscillating
triangular wings have been given by Robinson (reference 4), Haskind and
Falkovich (reference 5), and by Stewartson (reference 6). In both
references 4 and 5 formal solutions to the problem were obtained in terms
of speclal systems of curvilinear coordinates. Robinson's solution was
given in terms of a double summation of trilinear combinations of Bessel
functions of the first kind with Lam€ functions of the first and second
kinds. Similarly, the solution of Haskind and Falkovich was given in
terms of summations of Bessel functions of the first kind combined with
elliptic integrals of the first and second kinds. In both references k
and 5 the potentials were not reduced to useful forms for calculating
forces and moments.

In reference 6 Stewartson makes an Interesting though specialized
use of the Laplace transformation to develop a method whereby terms of
the velocity potential for triangular plan forms, expanded as herein,
can be obtained. Stewartson gives formulas that, except for errors
presumably in printing, can be used to develop the potential to the
second power of the frequency but he omits many details in his derivation.

SYMBOLS
) disturbance-velocity potential
X,¥,Z rectangular coordinates attached to wing moving in

negative x-direction

E,M rectangular coordinates used to represent space location
of doublets in xy-plane

Zy function defining mean ordinates of any chordwise section
of wing such as y =y; as shown in figure 1

w(x,y1,1t) vertical velocity at surface of wing along chordwise
section at y = y;

X0 abscissa of axis of rotation of wing as shown in figure 1
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time L
vertical displacement of axls of rotation °

amplitude of vertical displacement of axis of rotation,
positive downward

angle of attack

amplitude of angular displacement about axis of rotation,
positive leading edge up

time derivatives of h and a, respectively
veloclty of main stream
velocity of sound

free-stream Mach number (V/c) .

frequency of oscillations

reduced frequency (%?)

half apex angle

represents functions of @, x, and M

functions used to denote doublet distribution functions
constants associated with Dy, depending on BC
constants depending on fC

constants depending on BC and M

root chord of wing
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s semispan of wing

o] slope of ray passing through vertex of wing

q,N,6,T dummy variasbles

P density

Ap local pressure difference

P section force (total force at any spanwise station)

Ll,Le,L3,Lﬁ components of section force coefficients

M section moment (total moment about x = Xop at any
spanwise station)

Ml’ME’M3’Mh components of section moment coefficients

My, total component of damping-moment coefficient

ANATYSTS

Boundary-Value Problem for the Velocity Potential

Referred to a rectangular coordinate system moving forward at a
uniform supersonic speed in the negative x-direction (see fig. 1) the
differential equation for the propagation of small disturbances that
must be satisfied by the velocity potential is

ce dx®  Jy°  dz°

1(5 +V§_>2¢=52¢+52¢+32¢ (1)
ot ox

The main governing boundary condition to be satisfied by the velocity
potentlal is that the flow be tangent to the surface of the wing, or

<§Q> - w(x,y,t) = v 22, Pm (2)
oz 2 —30 ox ot

where Z, 1s the vertical displacement of any point of the wing. For
the particular case of a wing independently performing small sinusoidal
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pitching oscillations of amplitude @y about some spanwise axis xj
and small sinusoidal vertical translations of amplitude hg, the
quantity Z, in equation (2) is

Zy = elwt ag(X - Xg) + hé] =a(x -~ X3) +h (3)

(see fig. 1(b) for sketch showing instantaneous displacement of sec-
tion y = yj.) For convenlence, the frequency of oscillation of both

pitching and translatory motion 1s denoted by w. Considering these
motions to occur at separate frequencies would add no difficulties to
the derivation.

Substituting the expression for 2Z; (equation (3)) into equation (2)
glves :

w(x,y,t) = Vo + &(x - xp) +h (4)

Equation (4) implies that the velocity potential may be expressed as the
sum of separate effects due to position and motion of the wing associated
with individual terms of this equation, namely

g =g, + 8+ (5)

Derivation of @

In order to obtaln the analytical expression for the potential ¢,
it is necessary to derive only one of the subsidiary potentials appearing
in equation (5), say ¢a- The other subsidiary potentials ¢d and ¢ﬁ

can then be obtained from the derived expression for ¢m by simple
comparison.

In order to satisfy the boundary-value problem for ¢a: a convenient

procedure 1s to start with the expanded form of the potential of a uni-
form distribution of doublets. Then, for a given power of the frequency
of oscillation this potential, as will be shown in the following analysis,
can be modified so that, when integration is made over the appropriate
region, the results satisfy the differential equation (1) to the given
power of the frequency and satisfy the condition of tangential flow
exactly. The type of doublet required is that with its axls normel to
the plane of the wing. The potential of such a‘doublet may be obtained
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from the potential of a source, located in the plane of the wing, by
partial differentiation with respect to the direction normal to the
plane of the wing. Similarly, the potential of a distribution of the
required type of doublets can be obtained from a distribution of sources

. located in the plane of the wing

, The potential at (x,y,z) due to sources located at points (g 1,0)
in region r (illustrated in fig. 2) of the xy-plane which satisfies
the differential equation (1) may be written as

e-iZG(x-g) cos (@ R>
_ Vo M
- [ f . at an (6)
where
— Mo Mo
D = ——— = —
cpe  Vp2
and

R =\[(x - £)2 - g2y - )2 - p2?

Expanding the integrand of equation (6) into a power series in o,
collecting terms with respect to &, and differentiating the resulting
integral with respect to =z gives the expanded form of the potential
of a uniform distribution of doublets, namely

= 7%43_ U/l/“[:Ol S+agpR+ . . L+ aOngm_3 ...+

g(all%+a12R+.. .+almR2m'3+...>+. « o« +

(7)
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where

and

&nm ~ - a‘nl (9)

_ (_l)m-—l 5)&1‘1—2
(2m - 2)!\M

For convenience in the succeeding discussion and analysis equa-
tion (7) may be written in the following form:

_Vad § [
%—nazzmﬁf Rdédq+

= (-l)m-l Cﬁ)zm'z om-3
; (m - 2)t\u/ °nl frfgnR a8 an (10)

An interesting and slgnificant property of equation (10) 1is that
the coefficient of each power of £ satisfies the differential equa-
tion (1) and has the form of a source potential with strength propor-

iw\n -1t
tional to o) e . This property msy be shown by wrlting the coef-

1
.

ficient of ¢t as follows:

1]
O
O
es]

1+
M

m ”_ﬁ;ll’“_'_l_(.a‘z )2‘“'2 fn1 (@)
R Z;_§(Qm-2)l R R MR
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A more general solution to equation (1) may thus be obtained by intro-
ducing properly chosen weight or distribution functions (denoted by
ED,(&,n)) into the coefficients of &M in equation (10). Let this
solution be denoted by ¢l; then it can be written as

00

m-1 /—\2m-2
(;;11) 2)! ﬁ) ol ff Dp(E,n)e™ R 3 a¢ 4y (12)
m=2 - : :

r

Examination of equation (12) shows that, at the surface z = 0, the
potential ¢1 is determined by the first integral expression but that

both integral expressions may give rise to normal velocity. In succeeding
steps in this analysis it is shown that the distribution functions Dn(g,n)

in equation (12) can be determined so that the first integral expression
taken alone will exactly satisfy the boundary condition of tangential

flow for ¢a; that is S—E> = Va. Also, any additional normal veloc-
z :
z=0

ity that arises from the second integral expression can be canceled, to
the required order, by consideration of additional doublet solutions to
equation (1). The problem of satisfying the boundary-value problem for
the veloclty potential ¢a may thus be reduced to that of determining

the appropriate distribution functions and additional éolutions to
equation (1).

In order to show that the first integral expression in equation (12)
can be made to satisfy the boundary condition for” ¢a’ the coeffi-

cient Vaanl appearing in this equation is first considered. If the
analytical expression for the coefficient a_; (equation (8)) is multi-

plied by x™ and summed with respect to n, the result is identically
Va. This result may be shown as follows:

0 00 - . . )

(i)™ e, = 4

Vo E - Xnanl = Va E . — e X o ygeldx -10x o (13)
n= n= : :
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It is significant that this identity holds if only terms in @ to any
glven power are considered. For example, retaining only terms including
@ to the third power gives

T2x2e  im3x3 -3 2
Va <l - iox - 2 + lng ) + x(ﬂB + OPx - ngx ) -

X
2

Va (14)

o — _
,@(“_)_ 153 x) L3

2 2 6

Next conslder the normal velocity at 2z = 0 associated with ¢l, namely

5¢1) Va lim gntl
1= <S;_ 2=0 T % z—>0 £ J[I/n Dyn(E,n) R de an +

i ___(;;lim;;@)em-eanl ff (&,n) % R20-3 4¢ gn

(15)

Examination of this eguation and equation (13) reveals that the first
integral expression on the right of equation (15) yields Vo exactly,
provided the distribution furctions are determined so that the following
integral equation is satisfied:

Va 1im d°
7T Z——?O—g

The kernel of thls integral equation has the form of a steady-state
doublet potential. The problem of determining the distribution functions
for this case is therefore analogous to determining distribution functions
for certain steady-state problems. The distribution functions for steady-
state problems, at least for those involving conical flow, can be deter-
mined by a stralghtforward process, the main details of which are given
in the appendix. In this appendix a method of solving equation (16) for
a triangular wing is derived and the distribution functions required to

= Vax® (16)
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derive the velocity potential for this wing to the third power of @
are given. It is to be noted that the method derived for solving equa-
< tion (16) for a triangular wing may be generalized to apply to various
plan forms and to problems of satisfying the boundary conditions for
various velocity distributions.

From this point on, the analysis is restricted to the derivation of
terms of the expanded potential involving & +to the third power. The
method for deriving these first few terms is quite general and can be
used to obtain as many additional terms of the expanded potential as may
be desired. As previously pointed out, however, terms of the potential
after the first few become very unwieldy.

If the_gppropriate distribution functions are known for terms
involving ® to the third power, equation (15) may be written as follows:

W) = Vo + Wy (17)

"

where

Va 1lim 92 @R = ‘ e D
Vo= - 0 5—;2—59_ Lf El - 1ox)EDyR + ik DlR] at ang (18)

is the additional vertical velocity arisiﬂé from the second integral
expression in equation (12) involving ® to the third power. In order
to maintain the boundary condition for @y, this additional velocity wp
must be canceled. As previously pointed out this canceling, to a
required order, can be achieved by considering other doublet solutions
to equation (1). For this particular case consider a relation ﬁi

similar to @$; (equation (12)) having the following form:
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The vertical velocity Wy, to the third power of @, arising from this
expression is

— Vo lim ?° 5\ _ = &3 —-—E,u
Wl“g_,fz—-eog'z_2<ﬁ> ff&l—icnx)Do—R—+iml-ﬁ— d¢ dn (20)
r

In this equation the distribution functions 56 and D7 can be deter-

mined, as discussed subsequently, by the method given in the appendlx so
that W; is identically equal in value but opposite in sign to Wwo.

When these functions are determined, the boundary condition for ¢a is
satisfied by wy + W} = Va, which implies that the potential ¢a to the
third power of @& is given by the sum

o, = g1 + Bi (e1)

to this power of .

Expressions for 56 and 5i are given together wlth expressions
for other distribution functions Do, Dy, Dy, and D3 in the appendix.

In regard to the determination of 56 and D;, as well as other orders
for 5h in more extended treatments, it may appear necessary, in order

to formulate integral equationd® for these functions, to perform the
generally unwieldy integrations of the type

2
ziif)o g?' ff D,(&,n) ™R3 qe an (22)
I

appearing in equation (15). 1In general, however, the information neces-
sary for the determination of the functions Dn, can be obtalned, as is

done in the derivation of the functions D, 1in the appendix, by exam-
ining the values of these integrals and their derivatives with regard to

the parameter 6 = % at some particular value of 6.

Returning to equation (21) and introducing into this equation the
expression for ¢l (equation (12)) and the expression for %i
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(equation (19)), each to the third power of @&, glves for the

potential ¢a to this power of @ the following result:

N ’ 0 — @ 5 B3 3\1 na i
¢CL—V(LS'Z—L/;‘/’\ EDOKl-iﬂ)X———X +-—6-—X 'ﬁ‘— _QF—EME R| +
-  — D —
§2Dl (iE + TPx - A x2>-l— - 10)_% R} - §3D2<a3— - -iﬁ x)-]; -
v 2 R oM 2 3 R
b 4P 1, 3= (B2 13 L\l | M= i3 1
§D3——6—§+§DO<E§-E §+§D1_2F— dg dny (23)
« Since 1t may be shown, as in fe:f'erence T, for example, that :
Vo 1im O f f n+l Ul
250 5 . Dp & dt dn = Vax™,(x,y)
equation (23) reduces, at z = 0, to
_2 -
¢CL = VCL|:<1 - imx - o X2 + -—6— X3>D0(X,y) +
=32 =2 =3
x(i& + 21)2 - X )Dl(x,Y) - XE(% ~ i% )DQ(X,y) -
3 b (,5) + 2B - B W Ga(ey) + 3 B T (xy| (24
X 6 VXY EMQ - ) X1bolx,y N Y
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which, after the expressions for the distribution functions given in the
appendix are substituted and the terms are regrouped, may be written in
the following simple form:

= Vayc2x2 - y2 EO + (A - Ag)ilx - 078°%° - o P2 +

o333 + oyl (25)

The quentities Ay, A;, and 015 Opy 03, and o) in this equation
are part of a group of quantities Ay, Xj, Ok, which are defined in

the appendix; these quantities are suitable for writing the potential
and expressions subsequently derived for forces and moments in simple form.
The quantities Ay and xj are functions only of the product BC (ratio

of tangent of the half apex angle of the triangle to the Mach angle) and
are shown plotted in figures 3 and L, respectively. The quantities Ok

are functions of Mach number M and the product BC. These quantities
may be evaluated for particular values of M from the plots of k in

figure L.

The quantities Ay and A; are the same, as should be expected,

as the parameters associated, respectively, with constant angle of attack
and constant pitching of triangular wings of references 8 and 9.

Expressions for the potentials ¢& and ¢ﬁ can be obtained by the
method discussed for obtaining ¢a: or they can be obtailned to the third

order of ® by comparison and synthesis from equation (23). After
simplification these expressions are

= &[\/02}(2 - y° (Alx - exeimxa + A3ic3132y2 - 05<32x3 + 0652623’%{)-
xo\lchg - y2 (AO - 27 iox - 0‘152}(2 - 02(3252}’2)} (26)

g = }‘1[02}(2 - y2<AO - 2Aix - 0%Px° - 02&3262y2):, (27)
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At BC =1 or C = %3 which is the condition at which the Mach lines

- from the apex of the triangle coincide with the leading edges of the
triangle, equations (23), (26), and (27) reduce, respectively, to

5 2 ‘ 2 _ .
¢a.=?l’2,/xe - 52y2<1 Jimx M7+ 500 2MT - 2 TPp2y2 4

B 3 9oM2 - 9oM?

M 4+ 7,33 . M -7 30505

—_ :La>3x‘ + - im3ﬁ%r X (28)
210M 210M

[ & 5 (112

" Bx 45 15 315M2

=2( o2 T 2 2 - '
@=( oM : 7) B%rEX> ) xo<1 _idx M +25 Py - _EM__225252y2>
315M 3 90M 90M

(29)

For M =1 or for values of the product PBC such that 6202 <1,
equations (23), (26), and (27) reduce, respectively, to

By, = VayCBx? - y2 | (31)
” | B = a\c®x® - y2<x - xo) (32)
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B = hcB® - y2 (33)

These expressions are the counterpart of the potential for vanishingly
small triangular wings in steady flow (reference 10) and may thus be
regarded as the potential of a small triangle oscillating in pitch and
vertical translation in either subsonic or supersonic flow.

Forces and Moments

As pointed out in the Introduction, the velocity potential for the
triangular wing can be used to calculate the aerodynamic forces and
moments for other plan forms that can be formed from the triangular wing
by cutting the trailing edges so that they lie shead of the Mach cones
emanating from their foremost points. Sketches of different plan forms
thus obtained are shown in figure 5.

The force and moment coefficients desirable for most flutter cal-
culations are those that yleld the spanwise variation in these quantities
or chordwise force and moment coefficients. These coefficients are
obtained by integrating the pressure difference along any chord for the
forces and the pressure difference multiplied by a moment arm for the
moments. A convenient procedure in deriving these quantities is to
introduce the reduced--frequency parameter %% = k and to employ the
the variables X, y, and Xp 1n a new sense as nondimensional quan-
titles obtained by dividing the o0ld variables by the maximum chord 2b

of the wing.

The pressure difference between the upper and lower surfaces of the
wing is

P A
o 2p<2b ox * at) (34)

The force, positive downward, at any section of any of the plan
forms shown in figure 5 may be expressed as
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X1 X1
_ _ o)
YP —‘2b " Lp dx = -hpr;/c (5‘%6%” g%) dx
. X X1
= -2pV<Q + 2ikf ¢ ax (35)
:Iy/C y/c

where xj has the following values with respect to the different con-
figurations shown in figure 5:

In plan form A

Xl =1 (368')
Iﬂ plan form B
x; =1-% (36b)
m
In plan form C
xy=1+% (36¢)

In plan form D

It

X3 =1+ % ~ for 0Ly s m( S -IQ

< (364)
g S s
*1 = Zoc for m(ebc - l) <V Eg

After the expression for @, given by the sum of equations (25), (26),
and (27), is substituted into equation (35) and the integration is per-
formed, the results may be reduced to the form

I |
P - _upbvzkzewt[%l (L1 + 1Lp) + ag(L3 + iLhil (37)
where

2, 2 2 2
Cox® -y Aoy .1 ©*%1
cosh

BE

Xq

Ly = (lLMg)\.l - BQAO> +
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UMPxx- 2
= \cBx [ ! kxl (3M201 - 2;32xl> - 13”;—252&(3#0902 ¥ 252x1>]

(38p)

= |JcBx; 2 L (6;39M2x2 ptay - 3oy + emesgxl) +

2
gé‘%c—e-ﬁa%l - 3p2MBc2a5 - 3M*cBop - 2M2xl:l - 2xglp (38¢)

2MeKkx4 3
L, = \C%x% - Q[B (2[32A1 + B2Ag - 1+M2x1) + T(eal‘xg -

O D
M2820, + UMFo, - 4p2M20.) - Moy uete2a, + 2p2h, - M2o, +
1 3 5 BECQ 3 2 1

kC

Cx, |4
Pp2c20, - BM*CP0, - 88202M206>:| - cosh™1 ;‘1[03’ -

In a similar manner, the moment (positive leading edge up) about
the axis x = X5 1is

X
M, -hb2f (x - X9) Ap ax

y/c

' h
_upvekgbg[—bg(Ml - 1Mp) + ag(M3 + iMh):l (39)

"
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where

l’-xle
3p°

My = |/C%xy I:

My = \CPx, 2 - y2

pC

plic3

3
My = ,/Cex'l—‘“—e e [Aom X1

k2 gt

le2

B'C

MRk, 2 2
n X (2‘32’“1 + Moy + LLMEBQCEGQ):] + [Aoy -

MEE— h(QBQXl + Mgcl + hMECQGl)J cosh™1 . 2xoLo
y

19

<4M2)»1 - BEAO) + —LL(eng + B2A ) - 2xgLy (40a)

3pe¢=

oM kxl3

Bt

(eﬁle - 3M201) <

Ck

Cx
(kob)

(B”Al - 2MP2 - 6M2B2h, + 3thl> ¥

—E—2<BL‘A1 - Ptelay - 287 + 2P, - o) - M“secgcz)] +

|Aov® Sy o 4.2
) 2.2 2.2

Lkg +%-BC3<BA1 laPptca, - 2P, + 2R, Ml*c-
Cx

MMABQC202)] cosh™1 —=

y

- 2xO<Ml + Ly 2xOL1)

(L4oc)
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)-I-Xle 2
M, =\C%x,2 -y 3e2k(BEAO + 2p°A; - 1+M2xl> - ;;%C—QE@EAO - pPay +

16M2Kx1 ¥ \
2 1 L o) Mh 22
2MX1)+—z——5B (2BX2-6M01+’+ 03—M1305)-

16MPkx1 2y ©

602 b 232 2l 2
e <5BCA3+28 Ny - M20; + 5MPBMC20, - Moy -

DL
10M“59c20u + M25205 - 10M25“0206) + 16%%—(5560%

158%¢ 3

hgtay + 2220, + SMPplcBo, + aMog + SMYEECP0) -
2M26205 + 5MEB”0206>:| - 2xO(M2 + Ly + QXOLE) (40d)

In equation (37), for example, the quantity (L + iLp) 1is the lift-force

coefficient associated with vertical motion of the wing. The real part
L3 1is in phase with the vertical position of the wing and the complex

part Lo is 90° out of phase with this position. Similar definitions
apply to the 1ift coefficient (L3 + 1)) associated with pitching motion
and to the moment coefficients (M; + iMy) and (M3 + iMy). The complex

or out-of-phase terms determine the aerodynamic damping associated with
different wing motions.

Although the expressions for the components of lift-force and moment
coefficients in equations (38) and (40), respectively, are lengthy, they
may be quite easily evaluated with the aid of the graphs in figures 3
and k4.
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DISCUSSION

Sample Calculations

In order to give some indication as to the general nature of the
spanwise distribution of the different components of 1ift and moment
coefficients, equations (38) and (L40) have been evaluated at different
spanwise positions y for plan form A (fig. 5(a)) for the following set

of conditions: BC = 0.5, C = 1.0, x5 = 0.6, M= \/5/ , and k = 0.1.

These sample results are plotted as functions of spanwise position in
figure 6. The spanwise variations of the different components of 1lift
force are shown in figure 6(a) and the corresponding variations of
moment coefficients in figure 6(b).

In figure 6 note that, for the particular set of conditions for this
example, the maximum values of the components of moment coefficients M,

Mp, and M3 are positive and act near the tips of the wing, whereas the
maximum value of the component M), is negative but also acts near the

tips. It may also be noted that the integrated (in spanwise direction)
values of the components of moment coefficient, or components of total
moment coefficient, would in each case have the same sign as the maximum
value of the corresponding component of section moment coefficient. This
result is not necessarily true in general, because changing some of the
parameters involved in the evaluation of the spanwise distribution of
some components of both force and moment coefficients may change the
distributions significantly from those shown in figure 6.

The fact that the total component of moment coefficient M), 1s

negative in the example just discussed shows that, for the conditions of -
the example, this term would not contribute to the aerodynamic damping
but, on the contrary, would act as a source of energy for the oscillating
system. This circumstance is significant since it leads to the possi-
bility of the single-degree-of-freedom torsional instability discussed

in the following paragraphs.

Undamped Torsional Oscillations

The wing plan forms discussed herein, like two-dimensional and
rectangular wings, exhibit the possibility of undamped torsional oscil-
lations for certain ranges of Mach number M and location of axis of
rotation xg. This fact is borne out, as indicated in the preceding

paragraph, by considering the integrated (spanwise) value of the com-
ponent of damping moment M) assoclated with pltching or torsional
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motions. The main results of this phenomenon can be obtained by con-
sidering very slow oscillations so that only terms in equation (404)
for M), involving the reduced frequency k to the order l/k need be

retained. In this case,

Vexi2 - y2 | bxg? 8(2m2 - 1)

M, = - -2 [(M2 + 1)Ag - Ay(hM@ - 2)] M- My® +
hxg ) 2
v (Ao - (oM - 1)A1)X1 + Bxoho (1)

For the triangular plan form (fig. 5(a)) the integrated value or total
component of moment coefficient is

— 2
M), = 51—32_1{ -(2M2 + 1)4y + 3(aM2 - 1)A; + uxO[Ao - (M2 - l)Al] +
hxo?(M2 - 1)Aq (h2)

In general, the condition of torsional stability or instability
depends on the sign and magnitude of M)y in equation (42). Positive

values of ﬁh indicate stable conditions and negative values indicate

the possibility of torsional instability. Between the stable and unstable
conditions, that is when M) vanishes, a borderline state of unstable

equilibrium separating damped and undamped torsional oscillations exists.

The ranges of values of Mach number M and location of axis of
rotation xg for which M)y vanishes for some selected values

of C = tan € are shown plotted in figure 7. The regions inside the
curve in this figure indicate instability. The dashed curve, on which
some of the solid curves terminate, represents the locus of values of M
and Xxg for which Mh vanishes for the whole class of triangular wings

with supersonic leading edges, that is, for triangular wings where
BC 2 1. It will be noted that M), vanishes for values of Xo @ahead of

the root %- chord position. It will also be noted that, as the vertex
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angle € = E@n‘l C decreases to 30°, the range of values of Mach number
for which M) vanishes decreases sharply.

In conclusion, investigation of equation (42) shows that, for a
given value of the reduced frequency k, Mach number M, and location of
the axis of rotation Xo, the magnitude of the damping coefficient Mh

decreases as C decreases and, consequently, torsional instability is
less likely to occur with slender triangles than with wider triangles.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Fleld, Va., June 19, 1951
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APPENDIX
METHOD FOR DETERMINING DISTRIBUTION FUNCTIONS

In this appendix a method of obtaining the distribution functions
is developed in detail. Expressions for the distribution functions
required to derive the velocity potential to the third power of the
frequency of oscillations and a set of functions useful in writing the
expression for the potential in concise form are given.

As indicated in references 8 and 9, where the triangular wing is
treated for constant angle of attack and for constant rolling and pitching
motions, a convenient form of the velocity potential corresponding to a
distribution of vertical velocity proportional to xI' is

n+2

3

d C 1 4

Py = 12 Fy(o) do JF ¢ : (A1)
n dz Jg 0 (x - £)2 - B2y - ot)2 - p22

vhere o 1s the slope of a ray passing through the vertex of the wing
(n = 0t), & 1is the least value of ¢ that causes the denominator R

in the.integrand to vanish, and F (o) = % D,(&,n) is the distribution
function that 1s to be determined so that

op
(¥n)__, = <Bz_n>z=o = x" (a2)

In equation (Al), the integrand is noted to be singular at the
limit € = €. A form of the integrand which avoilds this difficulty is

obtained by making the following change of variables:

_ X p)
qQ = ———— (1 - B0
. 1 - 262 )
_ Bx o, z° 2 0
N=—"="_ /(6 - = (1 -
1 - 6202 V& o) + x2 ( B=o®) (43)
o =%
X
T = cospl &= £
N




25

(GV) uoryenbs 10F S9ATT JTWTT 9Y3 03 Jurssed

snyy, % J0J uoryenbs TeaSoqur oyg SOIITTIWTS PUB POATOAUT SUOTJBINOTED SU3 S9INpad 0B8]
STUL JO 25n JUTHBW °*9 JO antea oy3 soyoeoxdde o0 JO onTBA 9U3 USYM aSTIe 3BYq ‘Arquonbes
-qng jno psgqutod ‘sarqraIenBurs SulqoerBeu ang UOTIRIBIMUT oyl SutwmroFisd usYyq PUBR JTWIT 9UL
03 8utod 3saIy £q pauTe}qo 9q PTNOM 38U SNTBA Y3} SB SWeS 943 ST O = Zz 3JTWIT 9U3 03 Sutol
usyjl PuUB SUOTQBIZOGUT PoyBOTPUT SYg3 Sulwroaad Aq psuleiqo UM JO anTBA Yy uorqenba sSTUl UT

(¢v) u

Lp L ysod A.r Ysgoo U + MV A._\ ysod meuﬂz ,\Jm\nAm 29 Hv \)Am I
b/u b m U0 op (0)%Z D T

ro\;m\mﬂmbmu _ Hv r\lﬁm Fu)g- b OSTZE T,
4809 (0)ug 5 < - omr T

N
+.rg.moo hwoul
@Q H+GA nu wvﬁz

X
b T-

ST

0=2, 4
‘(o vﬂ_m I0J uoTyenbs TRIZSQUT UR ST YOoTUm ¢ Alm.v = Un g0 uoTssoxdxs Surpuodssaiod SUY3 purB

Uge

v Lp L Ysod N -~ b lllLi.. N__T
(hv) z+uf ) . (\ (9)%a . o T ¢

§ T-Us0?

N~
A
N
E
g
=

ssmodaq (Ty) uorjenbs sUOTN3TISQNS 959U YFTM °UOTIBISOQUT JO STQBIIRA MSU 9U3} ST L OJISUM




26 NACA TN 2457

cosh T)n*l cosh T 4Tt

= x (A6)

where Ny 1s the value of N at z = 0. The requirement that the normal

velocity be proportional to x% and independent of y implies that all
derivatives of equation (A6) with respect to y or 6 must vanish, or
that Fn(o) must be so determined that the final value of the integral
in this equation be independent of 6. The requirement that all deriv-
atives of equation (A6) with respect to 6 vanish leads to other equa-
tions for F, and, after n + 1 such differentiations, the equations

acquire forms for which solutions are known. The value of ¥, can then
be determined from these known solutions by evaluating each of the

den
K

derivatives at any arbitrary value of 6 in the range -C <8 <C
de

as follows:

The Kth derivative of W,

the following integral equation for Fp:

dKWn _ B%(n + 2) C Fn(o) do To Bx K
gk @ j.; (2 - 13202)3/24 (1 B ,3202> (a -

with respect to 6 (equation (A6)) gives

Ng cosh T)n+1 Sgﬁg—l o(t) dT =0 (A7)
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where

o( )

(n + 1)! Bo + cosh T \&
" (n+1-K)! Ng cosh T - g

- K(n + 1)! Bo + cosh T K—lN -1,
(n+2-K)!\Ng cosh T ~-gq 0

o+ (-1 KRNy K

K(K - 1)(n + 1)! B0 + cosh T K-QN 2,
(n+3-K)! \NO cosh T - q 0

. When K = n + 1, the expression for ¢&(T) may be recognized as being a
binomial expression, namely

]

Bo + cosh v 1 \BtL
o(T) >

(n + 1)! - =
NO cosh v - q NO

(n +1)!(BoNg + q)
(—No)n+l(q - No cosh T)n*l

(n + 1)1x0tl

]

(48)

(_No)n+l(q _ NO COSh T)n+l
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This function also satisfies eQuation (A9) for any value of n and

satisfies equation (A7) for all derivatives beyond the nth

dfwy
aok
derivative. A more general form of solution to equation (A10) may be

shown to be
S (A12)

where m 1is an integer and m £ n. The validity of this solution
follows, since

Hy
i

m A mletT '
o'm=[ -(e-o):l =;m(e-c)r (A13)
b= 'r!
and
57 m Q=T SR
aYCce - o m!e™ Cc -0 (AL4)

(6 - 0)n+3 ) =0 (m - r)!r! (6 - G)n-r+3 ’

Each term of the summation in equation (Alk) is found to have the form
of the integrand in equation (A10), from which the function (Al2) is
concluded to satisfy equation (AlO) and equation (A7) for all values of
K >n.

From thé foregoing discussion and consideration the distribution
function F (o) may be uniquely deteruined in terms of expression (Al2)

as follows:

Consider the expression
Fp(o) = Agfg + Agfy + .« . .+ At (A15)

where the coefficients Agy Ay, . . . A, are constants that are to

be determined.

n

Each term on the right of equation (Al5) is noted to satisfy equa-
tion (A7) for all derivatives beyond the nth and a total of
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n + 1 parameters is to be determined. If expression (Al5) is intro-
duced into equations (A6) and (A7) and the indicated integrations in
equation (A6) and in equation (A7) for K =1, 2, . . . n are performed,
n + 1 linear equations are obtained in A,, A, . . . A, from which

these constants may be determined.

The integrations with respect to o in equations (A6) and (A7) are
in general difficult and tedious to perform; however, as previously
pointed out it is only necessary to perform the integrations for some
particular value of 6 in the range -C <6 <C. The integrals have
their simplest form when 6 = O and the integrations can be made for
this value of 6 by reductions and use of formulas in reference 11.

The distribution functions Fy(o), Fy(o), Fx(o0), F3(c), fb(c),
and fi(o) and functions Dp(&,n) calculated by the foregoing method are

as follows:

Ag\fc? - o2 Dy
Fy = Ap\C2 - o2 D,

ag|cPe? ~ 2
A\cPE2 - 2

Fo

il

2.2
Fp = (Ap + A3p202)|? - o2 D, = <A2 + Ag B_gfle_>\/c2§2 - 72
242%/c2 _ 42 A562n2 T S
F3 = (&) + Asp20 We2 - o Dy = | Ay + T Jazge =
= — 2.2 _
= _ 2.2
where
1
Ao = v
1 - p2¢c2
A B

BECQF' + (l - BQCQ)EI
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A, = 243
- 2 2ads + BeC2ap°
2dp
A =
3 2d1d3 + BAC2dp°
A, = 6dg
6dudg + p2C2d5°
o o 6d5
° 6aydg + p2ceas2
. 2d3d, - B2C2a,dg

B 24,2
~2a1d3 + B4,

2(a;dg + dpdq)
T 2aja; + pPcay2

6dgdg - BCCands

) 6dydg + B202d52

6(dpdy, + dsdg)
~ 6aydg + BPCPas?

The quantities d, are defined as

_ 5(p%c® - 3elcyFr + (2 - 108202 + 6pich)E:

- ) dl

31
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P = 2B2C2F' - (1 + B2C2)E
2 (1 - p2c?)?

0 - (38202 - splc)Fr - (6 - 1082c2 + eplchE
3 (1 - p%c?)?

(2782c2 - 31phck + 1286C6)F' + (6 - 55202 + 654CH - 2upbCo)E!
6(1 - 3202)3

_ (9p2c® - plchyFr - (3 + 782 - 2plchE
> (1 - p2c2)3

(38202 - gplchk - opbeb)r' - (6 - 1582c2 + splch - 4pbeb)E!
(1 - g%2)3

d6=

3 BQC2(E' - F!)
T7 201 - %2

REC2F' - E!
ig = ————>—
1 - pC

4n = pece [(8202 - 3)F' + (b - QBECE)E']
’ 6(1 - pc?)?
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Combinations of these functions useful for writing the potential
in concise form are:

Ag - Ay A9
_ = = A 2 =
2 1 _ )‘5_M2_01
Ay - A
i S~ Ao A3z ) Mo e
2 ) I—VI-Q— 2
A2—A)+
2 MoM3_,
243 - & 3@
g = M
M M
Al - A = A —_— . —m—— ==
1 2 5 ) 2 4
b - A3 = Ag
s M1
A5 - Mg = My @ =%
- A
3. M2 _
Ay + 5 = A8 Ay + ﬁE_ = 0§
Aohg
—5— = A9
ApAT
—5— = M0
A1A8
__2__=)\,11
by
1
—5= = M2
A - M1 = M3
Mo = Mo = My
It will be noted that the quantities A; (i =0, 1, . . . 9) and
. > (3 =1, 2, . . . 14) are functions only of the product BC. They
are shown plotted in figures 3 and 4, respectively. The quantities
op, (k=1,2, .. .6) are functions of Mach number M and the

product pBC and can be evaluated for particular values of M from the
plots of A; and Aj.
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x
3
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x=-7% x = Xp x=*= %
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0 ih x

(b) Section y =y; (xz-plane).

Figure 1l.- Sketch illustrating coordinate system and the two dégrees of
freedom a and h.
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Figure 2.- Sketch illustrating region of integration for the velocity

potential.
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.11,

.1

() J=1, 2, and 3.

Figure 4.- Variation of the quantities A3

as functions of PBC.
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Lo

BC

j = 10, 11, 12, 13, and 1k.

(c)

Figure 4.- Concluded.
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(a) Lift force.

Figure 6.- Spanwise distribution of components of 1ift force and moment
coefficients for xg = 0.6, BC = 0.5; C = 1.0; k = 0.1; M =|/5/u.
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(b) Moment.

Figure 6.- Concluded.
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